Cascade region proposal and global context for deep object detection
نویسندگان
چکیده
منابع مشابه
Cascade Region Proposal and Global Context for Deep Object Detection
Deep region-based object detector consists of a region proposal step and a deep object recognition step. In this paper, we make significant improvements on both of the two steps. For region proposal we propose a novel lightweight cascade structure which can effectively improve RPN proposal quality. For object recognition we re-implement global context modeling with a few modifications and obtai...
متن کاملKeypoint Density based Region Proposal for object detection using rCNN
Recent changes to the topology of regional convolutional neural networks (rCNN) have allowed them to obtain near realtime speeds in image detection. We propose a method for region proposal alternate to selective search which is used in the current state of the art object detection [3] and introduce the fine grained image datasets. In a maritime surveillance setting, it maybe important to not on...
متن کاملLocal Context Priors for Object Proposal Generation
State-of-the-art methods for object detection are mostly based on an expensive exhaustive search over the image at different scales. In order to reduce the computational time, one can perform a selective search to obtain a small subset of relevant object hypotheses that need to be evaluated by the detector. For that purpose, we employ a regression to predict possible object scales and locations...
متن کاملLearning Chained Deep Features and Classifiers for Cascade in Object Detection
Cascade is a widely used approach that rejects obvious negative samples at early stages for learning better classifier and faster inference. This paper presents chained cascade network (CC-Net). In this CC-Net, the cascaded classifier at a stage is aided by the classification scores in previous stages. Feature chaining is further proposed so that the feature learning for the current cascade sta...
متن کاملDeep Regionlets for Object Detection
In this paper, we propose a novel object detection framework named "Deep Regionlets" by establishing a bridge between deep neural networks and conventional detection schema for accurate generic object detection. Motivated by the advantages of regionlets on modeling object deformation and multiple aspect ratios, we incorporate regionlet into an end-to-end trainable deep learning framework. The d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2020
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2017.12.070